\( \newcommand{\cO}{\mathcal{O}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\GG}{\mathbb{G}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\LL}{\mathbb{L}}
\newcommand{\HH}{\mathbb{H}}
\newcommand{\EE}{\mathbb{E}}
\newcommand{\SP}{\mathbb{S}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\FF}{\mathbb{F}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\sF}{\mathscr{F}}
\newcommand{\sC}{\mathscr{C}}
\newcommand{\ts}{\textsuperscript}
\newcommand{\mf}{\mathfrak}
\newcommand{\cc}{\mf{c}}
\newcommand{\mg}{\mf{g}}
\newcommand{\ma}{\mf{a}}
\newcommand{\mh}{\mf{h}}
\newcommand{\mn}{\mf{n}}
\newcommand{\mc}{\mf{c}}
\newcommand{\ul}{\underline}
\newcommand{\mz}{\mf{z}}
\newcommand{\me}{\mf{e}}
\newcommand{\mff}{\mf{f}}
\newcommand{\mm}{\mf{m}}
\newcommand{\mt}{\mf{t}}
\newcommand{\pp}{\mf{p}}
\newcommand{\qq}{\mf{q}}
\newcommand{\gl}{\mf{gl}}
\newcommand{\msl}{\mf{sl}}
\newcommand{\so}{\mf{so}}
\newcommand{\mfu}{\mf{u}}
\newcommand{\su}{\mf{su}}
\newcommand{\msp}{\mf{sp}}
\renewcommand{\aa}{\mf{a}}
\newcommand{\bb}{\mf{b}}
\newcommand{\sR}{\mathscr{R}}
\newcommand{\lb}{\langle}
\newcommand{\rb}{\rangle}
\newcommand{\ff}{\mf{f}}
\newcommand{\ee}{\epsilon}
\newcommand{\heart}{\heartsuit}
\newcommand{\floor}[1]{\lfloor #1 \rfloor}
\newcommand{\ceil}[1]{\lceil #1 \rceil}
\newcommand{\pushout}{\arrow[ul, phantom, "\ulcorner", very near start]}
\newcommand{\pullback}{\arrow[dr, phantom, "\lrcorner", very near start]}
\newcommand{\simp}[1]{#1^{\Delta^{op}}}
\newcommand{\arrowtcupp}[2]{\arrow[bend left=50, ""{name=U, below,inner sep=1}]{#1}\arrow[Rightarrow,from=U,to=MU,"#2"]}
\newcommand{\arrowtclow}[2]{\arrow[bend right=50, ""{name=L,inner sep=1}]{#1}\arrow[Rightarrow,from=LM,to=L]{}[]{#2}} % if you want to change some parameter of the label.
\newcommand{\arrowtcmid}[2]{\arrow[""{name=MU,inner sep=1},""{name=LM,below,inner sep=1}]{#1}[pos=.1]{#2}}
\newcommand{\dummy}{\textcolor{white}{\bullet}}
%for adjunction
\newcommand{\adjunction}[4]{
#1\hspace{2pt}\colon #2 \leftrightharpoons #3 \hspace{2pt}\colon #4
}
%Math operators
\newcommand{\aug}{\mathop{\rm aug}\nolimits}
\newcommand{\MC}{\mathop{\rm MC}\nolimits}
\newcommand{\art}{\mathop{\rm art}\nolimits}
\newcommand{\DiGrph}{\mathop{\rm DiGrph}\nolimits}
\newcommand{\FMP}{\mathop{\rm FMP}\nolimits}
\newcommand{\CAlg}{\mathop{\rm CAlg}\nolimits}
\newcommand{\perf}{\mathop{\rm perf}\nolimits}
\newcommand{\cof}{\mathop{\rm cof}\nolimits}
\newcommand{\fib}{\mathop{\rm fib}\nolimits}
\newcommand{\Thick}{\mathop{\rm Thick}\nolimits}
\newcommand{\Orb}{\mathop{\rm Orb}\nolimits}
\newcommand{\ko}{\mathop{\rm ko}\nolimits}
\newcommand{\Spf}{\mathop{\rm Spf}\nolimits}
\newcommand{\Spc}{\mathop{\rm Spc}\nolimits}
\newcommand{\sk}{\mathop{\rm sk}\nolimits}
\newcommand{\cosk}{\mathop{\rm cosk}\nolimits}
\newcommand{\holim}{\mathop{\rm holim}\nolimits}
\newcommand{\hocolim}{\mathop{\rm hocolim}\nolimits}
\newcommand{\Pre}{\mathop{\rm Pre}\nolimits}
\newcommand{\THR}{\mathop{\rm THR}\nolimits}
\newcommand{\THH}{\mathop{\rm THH}\nolimits}
\newcommand{\Fun}{\mathop{\rm Fun}\nolimits}
\newcommand{\Loc}{\mathop{\rm Loc}\nolimits}
\newcommand{\Bord}{\mathop{\rm Bord}\nolimits}
\newcommand{\Cob}{\mathop{\rm Cob}\nolimits}
\newcommand{\Set}{\mathop{\rm Set}\nolimits}
\newcommand{\Ind}{\mathop{\rm Ind}\nolimits}
\newcommand{\Sind}{\mathop{\rm Sind}\nolimits}
\newcommand{\Ext}{\mathop{\rm Ext}\nolimits}
\newcommand{\sd}{\mathop{\rm sd}\nolimits}
\newcommand{\Ex}{\mathop{\rm Ex}\nolimits}
\newcommand{\Out}{\mathop{\rm Out}\nolimits}
\newcommand{\Cyl}{\mathop{\rm Cyl}\nolimits}
\newcommand{\Path}{\mathop{\rm Path}\nolimits}
\newcommand{\Ch}{\mathop{\rm Ch}\nolimits}
\newcommand{\SSet}{\mathop{\rm \Set^{\Delta^{op}}}\nolimits}
\newcommand{\Sq}{\mathop{\rm Sq}\nolimits}
\newcommand{\Free}{\mathop{\rm Free}\nolimits}
\newcommand{\Map}{\mathop{\rm Map}\nolimits}
\newcommand{\Chain}{\mathop{\rm Ch}\nolimits}
\newcommand{\LMap}{\mathop{\rm LMap}\nolimits}
\newcommand{\RMap}{\mathop{\rm RMap}\nolimits}
\newcommand{\Tot}{\mathop{\rm Tot}\nolimits}
\newcommand{\MU}{\mathop{\rm MU}\nolimits}
\newcommand{\MSU}{\mathop{\rm MSU}\nolimits}
\newcommand{\MSp}{\mathop{\rm MSp}\nolimits}
\newcommand{\MSO}{\mathop{\rm MSO}\nolimits}
\newcommand{\MO}{\mathop{\rm MO}\nolimits}
\newcommand{\BU}{\mathop{\rm BU}\nolimits}
\newcommand{\BSU}{\mathop{\rm BSU}\nolimits}
\newcommand{\BSp}{\mathop{\rm BSp}\nolimits}
\newcommand{\BGL}{\mathop{\rm BGL}\nolimits}
\newcommand{\BSO}{\mathop{\rm BSO}\nolimits}
\newcommand{\BO}{\mathop{\rm BO}\nolimits}
\newcommand{\Tor}{\mathop{\rm Tor}\nolimits}
\newcommand{\Cotor}{\mathop{\rm Cotor}\nolimits}
\newcommand{\imag}{\mathop{\rm Im}\nolimits}
\newcommand{\real}{\mathop{\rm Re}\nolimits}
\newcommand{\Cat}{\mathop{\rm Cat}\nolimits}
\newcommand{\Fld}{\mathop{\rm Fld}\nolimits}
\newcommand{\Frac}{\mathop{\rm Frac}\nolimits}
\newcommand{\Dom}{\mathop{\rm Dom}\nolimits}
\newcommand{\Hotc}{\mathop{\rm Hotc}\nolimits}
\newcommand{\Top}{\mathop{\rm Top}\nolimits}
\newcommand{\Ring}{\mathop{\rm Ring}\nolimits}
\newcommand{\CRing}{\mathop{\rm CRing}\nolimits}
\newcommand{\CGHaus}{\mathop{\rm CGHaus}\nolimits}
\newcommand{\Alg}{\mathop{\rm Alg}\nolimits}
\newcommand{\Bool}{\mathop{\rm Bool}\nolimits}
\newcommand{\hTop}{\mathop{\rm hTop}\nolimits}
\newcommand{\Nat}{\mathop{\rm Nat}\nolimits}
\newcommand{\Rel}{\mathop{\rm Rel}\nolimits}
\newcommand{\Mod}{\mathop{\rm Mod}\nolimits}
\newcommand{\Space}{\mathop{\rm Space}\nolimits}
\newcommand{\Vect}{\mathop{\rm Vect}\nolimits}
\newcommand{\FinVect}{\mathop{\rm FinVect}\nolimits}
\newcommand{\Matr}{\mathop{\rm Matr}\nolimits}
\newcommand{\Ab}{\mathop{\rm Ab}\nolimits}
\newcommand{\Gr}{\mathop{\rm Gr}\nolimits}
\newcommand{\Grp}{\mathop{\rm Grp}\nolimits}
\newcommand{\Hol}{\mathop{\rm Hol}\nolimits}
\newcommand{\Gpd}{\mathop{\rm Gpd}\nolimits}
\newcommand{\Grpd}{\mathop{\rm Gpd}\nolimits}
\newcommand{\Mon}{\mathop{\rm Mon}\nolimits}
\newcommand{\FinSet}{\mathop{\rm FinSet}\nolimits}
\newcommand{\Sch}{\mathop{\rm Sch}\nolimits}
\newcommand{\AffSch}{\mathop{\rm AffSch}\nolimits}
\newcommand{\Idem}{\mathop{\rm Idem}\nolimits}
\newcommand{\SIdem}{\mathop{\rm SIdem}\nolimits}
\newcommand{\Aut}{\mathop{\rm Aut}\nolimits}
\newcommand{\Ord}{\mathop{\rm Ord}\nolimits}
\newcommand{\coker}{\mathop{\rm coker}\nolimits}
\newcommand{\ch}{\mathop{\rm char}\nolimits}%characteristic
\newcommand{\Sym}{\mathop{\rm Sym}\nolimits}
\newcommand{\adj}{\mathop{\rm adj}\nolimits}
\newcommand{\dil}{\mathop{\rm dil}\nolimits}
\newcommand{\Cl}{\mathop{\rm Cl}\nolimits}
\newcommand{\Diff}{\mathop{\rm Diff}\nolimits}
\newcommand{\End}{\mathop{\rm End}\nolimits}
\newcommand{\Hom}{\mathop{\rm Hom}\nolimits}% preferred
\newcommand{\Gal}{\mathop{\rm Gal}\nolimits}
\newcommand{\Pos}{\mathop{\rm Pos}\nolimits}
\newcommand{\Ad}{\mathop{\rm Ad}\nolimits}
\newcommand{\GL}{\mathop{\rm GL}\nolimits}
\newcommand{\SL}{\mathop{\rm SL}\nolimits}
\newcommand{\vol}{\mathop{\rm vol}\nolimits}
\newcommand{\reg}{\mathop{\rm reg}\nolimits}
\newcommand{\Or}{\text{O}}
\newcommand{\U}{\mathop{\rm U}\nolimits}
\newcommand{\SOr}{\mathop{\rm SO}\nolimits}
\newcommand{\SU}{\mathop{\rm SU}\nolimits}
\newcommand{\Spin}{\mathop{\rm Spin}\nolimits}
\newcommand{\Sp}{\mathop{\rm Sp}\nolimits}
\newcommand{\Int}{\mathop{\rm Int}\nolimits}
\newcommand{\im}{\mathop{\rm im}\nolimits}
\newcommand{\dom}{\mathop{\rm dom}\nolimits}
\newcommand{\di}{\mathop{\rm div}\nolimits}
\newcommand{\cod}{\mathop{\rm cod}\nolimits}
\newcommand{\colim}{\mathop{\rm colim}\nolimits}
\newcommand{\ad}{\mathop{\rm ad}\nolimits}
\newcommand{\PSL}{\mathop{\rm PSL}\nolimits}
\newcommand{\PGL}{\mathop{\rm PGL}\nolimits}
\newcommand{\sep}{\mathop{\rm sep}\nolimits}
\newcommand{\MCG}{\mathop{\rm MCG}\nolimits}
\newcommand{\oMCG}{\mathop{\rm MCG^+}\nolimits}
\newcommand{\Spec}{\mathop{\rm Spec}\nolimits}
\newcommand{\rank}{\mathop{\rm rank}\nolimits}
\newcommand{\diverg}{\mathop{\rm div}\nolimits}%Divergence
\newcommand{\disc}{\mathop{\rm disc}\nolimits}
\newcommand{\sign}{\mathop{\rm sign}\nolimits}
\newcommand{\Arf}{\mathop{\rm Arf}\nolimits}
\newcommand{\Pic}{\mathop{\rm Pic}\nolimits}
\newcommand{\Tr}{\mathop{\rm Tr}\nolimits}
\newcommand{\res}{\mathop{\rm res}\nolimits}
\newcommand{\Proj}{\mathop{\rm Proj}\nolimits}
\newcommand{\mult}{\mathop{\rm mult}\nolimits}
\newcommand{\N}{\mathop{\rm N}\nolimits}
\newcommand{\lk}{\mathop{\rm lk}\nolimits}
\newcommand{\Pf}{\mathop{\rm Pf}\nolimits}
\newcommand{\sgn}{\mathop{\rm sgn}\nolimits}
\newcommand{\grad}{\mathop{\rm grad}\nolimits}
\newcommand{\lcm}{\mathop{\rm lcm}\nolimits}
\newcommand{\Ric}{\mathop{\rm Ric}\nolimits}
\newcommand{\Hess}{\mathop{\rm Hess}\nolimits}
\newcommand{\sn}{\mathop{\rm sn}\nolimits}
\newcommand{\cut}{\mathop{\rm cut}\nolimits}
\newcommand{\tr}{\mathop{\rm tr}\nolimits}
\newcommand{\codim}{\mathop{\rm codim}\nolimits}
\newcommand{\ind}{\mathop{\rm index}\nolimits}
\newcommand{\rad}{\mathop{\rm rad}\nolimits}
\newcommand{\Rep}{\mathop{\rm Rep}\nolimits}
\newcommand{\Lie}{\mathop{\rm Lie}\nolimits}
\newcommand{\Der}{\mathop{\rm Der}\nolimits}
\newcommand{\hgt}{\mathop{\rm ht}\nolimits}
\newcommand{\Ider}{\mathop{\rm Ider}\nolimits}
\newcommand{\id}{\mathop{\rm id}\nolimits} \)
ISOSPECTRAL MANIFOLDS/NUMBER FIELDS VIA GALOIS THEORY
ISHAN LEVY
1. Number fields
Two number fields are arithmetically equivalent if they have the same Dedekind zeta function \(\zeta _K(s) = \sum _I \frac{1}{N(I)^s}\).
Note from the zeta function, we can recover the number of ideals of a particular norm. Indeed, for
any convergent Dirichlet series \(\sum _i \frac{a_n}{n^s}\), the smallest nonzero \(a_j\) can be recovered by noticing that the
function asymptotically behaves like \(\frac{a_j}{j^s}\), and after subtracting this term off and repeating, all the
terms can be recovered. Using the data of how many ideals there are of norm \(p^k\) for an rational prime
\(p\), we can recover the (unordered) residual degrees \(f_1,\dots , f_k\) of the factors of all the primes above any
rational prime \(p\). This information, is called the splitting type of \(p\). This recovers information such
as which primes split completely over \(\QQ \). Thus we can see for example that Galois extensions over \(\QQ \)
are determined by their zeta functions, and the degree over \(\QQ \) is an invariant of the zeta
function.
To study further the problem of determining when \(\zeta _K(s) = \zeta _K'(s)\) we will let \(N\) be a common Galois extension
over \(\QQ \) of both of them with Galois group \(G\), such that \(H,H'\) are the Galois groups over \(K,K\). Now we
can give an interpretation of splitting type in terms of Galois theory. In particular,
suppose that \(f_1,\dots ,f_k\) is the splitting type of some unramified prime \(p\), and \(D\) is the decomposition
group of some prime over \(p\). Then the action of \(G\) on the primes above \(p\) is the same as the
action on right \(D\) cosets. Thus the sizes of the double cosets \(Ht_iD\) of \(H,D\) correspond to the \(f_i\) via \(f_i|H| = |Ht_iD|\)
possibly after rearrangement this. The information of the sizes of the double cosets will be
called the double coset type of (H,D). Since by Frobenius density theorem every
cyclic subgroup is the decomposition group of infinitely many primes, we have that
the double coset type of \((H,D)\) is an invariant of the zeta function for any cyclic subgroup
\(D\).
The following lemma is purely group theoretic:
Lemma 1.1. Two subgroups \(H,H'\) of a finite group \(G\) have the same double coset types for any
cyclic subgroup \(D\) iff \(|H\cap [\alpha ]| = |H' \cap [\alpha ]|\) for any conjugacy class \([\alpha ]\).
It shows that two arithmetically equivalent number fields satisfy the lemma above for their
corresponding subgroups. In fact, the converse is true.
To see this, note that for any unramified prime \(p\), we can run the argument backwards to see that
the number of ideals of norm that are powers of \(p\) is the same for both \(K,K'\). Thus the Euler
products of \(\zeta _K(s),\zeta _K'(s)\) differ only possibly by the ramified primes. Now we will deal with the
ramification.
Let \(C_i\) be a decomposition group of the real place of \(\QQ \) (generated by complex conjugation). The
double cosets of \(H,H'\) with \(C\) then correspond to the real and complex places of \(K,K'\) (in particular one
of size \(2|H|\) is a complex embedding and one of size \(|H|\) is a real embedding). Thus we can
recover the numbers \(r_1,r_2\) of real and complex places from the double coset type of this
subgroup.
Now to see that \(\zeta _K(s) = \zeta _K'(s)\), we will examine their functional equations.To see that they can’t be different,
we will use the functional equation for the Dedekind zeta function. Now recall that if \(G_1 = \pi ^{-\frac{s}{2}}\Gamma (\frac{s}{2}), G_2 = (2\pi )^{1-s}\Gamma (s)\), then \(Z_K(s) = G_1(s)^{r_1}G_2(s)^{r_2}\zeta _K(s)\) has
simple poles at \(0,1\), is holomorphic elsewhere, and satisfies the functional equation \(Z_K(s) = |D_K|^{\frac{1}{2}-s}Z_K(1-s)\). Taking the
quotient for \(Z_K,Z_K'\), we get \(\frac{\zeta _K(s)}{\zeta _{K'}(s)} = |\frac{D_K}{D_{K'}}|^{\frac{1}{2}-s}\frac{\zeta _K(s)}{\zeta _{K'}(s)}\).
But \(\frac{\zeta _K(s)}{\zeta _{K'}(s)}\) is of the form \(\prod _1^n(1-\frac{1}{a_i^s})\prod _1^m(1-\frac{1}{b_j^s})^{-1}\) since there are finitely many ramified primes, and the only such function
that can satisfy such a functional equation is \(1\). Indeed, if we can’t cancel any of the terms
in the products, choose \(c\) to be the largest among the \(a_i\) or \(b_i\), we can observe from the
functional equation that \(1-\frac{2k \pi i}{\log c}\) is either a pole or zero of \(\frac{\zeta _K(s)}{\zeta _{K'}(s)}\), which is clearly impossible. As a
consequence, we also get the absolute values of the discriminants are the same. We have
proven:
Theorem 1.2. Let \(K,K'\) be number fields, \(N\) a common Galois extension over \(\QQ \), and \(H,H'\) the subgroups
corresponding to each. Then \(K,K'\) are arithmetically equivalent iff \(|H\cap [a]| = |H'\cap [a]|\) for all conjugacy classes.
As an example, the Galois group of the polynomial \(x^8-3\) is \(\Hol (\ZZ /8\ZZ ) = \ZZ /8\ZZ \rtimes \ZZ /8\ZZ ^\times \). The subgroups \(\langle 0 \rangle \times \ZZ /8\ZZ ^\times \) and the subgroup \(\langle (4,\pm 3)\rangle \)
satisfy the condition we want, but are not conjugate, so the corresponding subfields are distinct
but arithmetically equivalent.
2. Riemannian Manifolds
Two compact Riemannian manifolds \(M,M'\) are isospectral if they have the same eigenvalues of their
(Hodge) Laplacian \(\Delta _M,\Delta _{M'}\). Here we will think of \(\Delta _M\) as acting on \(p\)-forms for some \(p\). Examples of isospectral
manifolds have been known for a long time, such as Milnor’s famous example of two isospectral flat
tori, but many of the ways of producing these manifolds do not work in a lot of generality. Here is
a method that yields a result highly analogous to the way of producing arithmetically
equivalent number fields, and that can even produce topologically different isospectral
manifolds.
Namely, given a Riemannian manifold \(M\), we will find a condition for two covering spaces \(M_1,M_2 \to M\) to be
isospectral. An amazing feature of this construction is that the condition is topological, so that \(M_1\)
and \(M_2\) will be isospectral regardless of the metric on \(M\). Of course it is possible that for some metrics, \(M_1\)
and \(M_2\) will also be isometric, but as long as \(M_1,M_2\) are topologically different covers, generic metrics on \(M\)
will have them not be isometric.
The first fact that we will use is that the spectrum of a Riemannian manifold \(M\) is entirely
encoded in its analytic zeta function \(\zeta _M(s) = \sum _i \lambda _i^{-s}\), so we will try to understand how this function with respect
to covers. To do this, consider the inverse of \(d+d^*\) on \(V_M\), from its image to the orthogonal
complement of the kernel. As an endomorphism of \(L^2_M(\bigwedge ^*TM)\) it is self adjoint and compact by
Rellich compactness, so its square \((\Delta _M)^{-1}\) is trace class. It is diagonalizable so we can consider
\((\Delta _M)^{-s}\) for \(\real (s)>1\), which is also trace class, and moreover has trace equal to \(\zeta _M(s)\) when restricted to
\(p\)-forms.
Now let \(\tilde{M}\) a finite Galois cover whose group of deck transformations is \(G\), and let \(M'\to M\) be a cover
corresponding to a subgroup \(H \subset G\). We can identify \({V_{\tilde{M}}}^H\) with \(V_{M'}\) by pulling back functions and scaling by \(|H|^{-\frac 1 2}\) to
preserve the inner product, where \((-)^H\) means the subspace fixed by \(H\). Thus using the formula for the
projection to the fixed subspace, \[\zeta _{M'}(s) = \tr (\Delta _{M'}^{-s}) = \tr ({\Delta _{\tilde{M}}}^{-s}|{V_{\tilde{M}}}^H)\]\[ = \frac 1{|H|}\sum _{h \in H}\tr ({\Delta _{\tilde{M}}}^{-s}h) = \frac 1{|H|}\sum _{[g] \in G}|[g]\cap H|\tr ({\Delta _{\tilde{M}}}^{-s}g)\] where \([g] \in G\) are the conjugacy classes. Note that this formula only
depends on \(|[g]\cap H|\) for each \([g] \in G\). Thus we have proven:
Theorem 2.1. Let \(H_1, H_2\) be subgroups of the fundamental group of a compact Riemannian
manifold \(M\) such that \(|[g]\cap H_1| = |[g] \cap H_2|\) for each \([g] \in G\). Then the covers corresponding to \(H_1\) and \(H_2\) are isospectral.
The same example as for number fields from before works. Recall that given a finite
presentation of a group \(G\), via surgery one can construct \(n \geq 4\) dimensional manifold with
fundamental group \(G\). Thus we get a manifold \(M\) with fundamental group \(G = \ZZ /8\ZZ \rtimes \ZZ /8\ZZ ^\times \) and a generic
metric, and looking at the corresponding covers gives genuinely different isospectral
manifolds.
3. Questions
We have essentially the same result in what might seem like two very different contexts. The first
result made use of a functional equation of a zeta function, and the latter used a projection
formula for the trace of an operator, since we had an interpretation of the zeta function as the
trace of an operator.
Why is there an analogy in these two situations? Geometrically, a number field behaves a lot like
an algebraic curve. Indeed, there are differential operators on compact Riemann surfaces whose
zeta functions are analogous with Artin \(L\)-functions on arithmetic curves. So this leads to the
question: is the Dedekind zeta function (or more generally an Artin \(L\)-function) the trace of an
operator? This question is known as the Hilbert-Polya conjecture, and has led to a lot of research.
Alain Connes has apparently such an operator on a non-commutative space, and claims that the
Riemann hypothesis can be reformulated in terms of proving a trace formula for this
operator.